Bahadur representation for U-quantiles of dependent data

نویسنده

  • Martin Wendler
چکیده

Abstract. U -quantiles are applied in robust statistics, like the Hodges-Lehmann estimator of location for example. They have been analyzed in the case of independent random variables with the help of a generalized Bahadur representation. Our main aim is to extend these results to U -quantiles of strongly mixing random variables and functionals of absolutely regular sequences. We obtain the central limit theorem and the law of the iterated logarithm for U quantiles as straightforward corollaries. Furthermore, we improve the existing result for sample quantiles of mixing data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Spatial U-Quantiles: a Bahadur-Kiefer Representation, a Theil-Sen Estimator for Multiple Regression, and a Robust Dispersion Estimator

A leading multivariate extension of the univariate quantiles is the so-called “spatial” or “geometric” notion, for which sample versions are highly robust and conveniently satisfy a Bahadur-Kiefer representation. Another extension of univariate quantiles has been to univariate U-quantiles, on the basis of which, for example, the well-known Hodges-Lehmann location estimator has a natural formula...

متن کامل

On the Bahadur Representation of Sample Quantiles for Dependent Sequences by Wei

We establish the Bahadur representation of sample quantiles for linear and some widely used nonlinear processes. Local fluctuations of empirical processes are discussed. Applications to the trimmed and Winsorized means are given. Our results extend previous ones by establishing sharper bounds under milder conditions and thus provide new insight into the theory of empirical processes for depende...

متن کامل

On the Bahadur Representation of Sample Quantiles for Dependent Sequences

We establish the Bahadur representation of sample quantiles for linear and some widely used nonlinear processes. Local fluctuations of empirical processes are discussed. Applications to the trimmed and Winsorized means are given. Our results extend previous ones by establishing sharper bounds under milder conditions and thus provide new insight into the theory of empirical processes for depende...

متن کامل

Global Bahadur representation for nonparametric censored regression quantiles and its applications

This paper is concerned with the nonparametric estimation of regression quantiles where the response variable is randomly censored. Using results on the strong uniform convergence of U-processes, we derive a global Bahadur representation for the weighted local polynomial estimators, which is sufficiently accurate for many further theoretical analyses including inference. We consider two applica...

متن کامل

Bahadur representation of sample quantiles for functional of Gaussian dependent sequences under a minimal assumption

We consider the problem of obtaining a Bahadur representation of sample quantiles in a certain dependence context. Before stating in what a Bahadur representation consists, let us specify some general notation. Given some random variable Y , F(·) = FY (·) is referred as the cumulative distribution function of Y , ξ(p) = ξY (p) for some 0 < p < 1 as the quantile of order p. If F(·) is absolutely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2011